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Overview

1. Introduction

- The quark-gluon plasma
- High-energy nucleus-nucleus collisions

2. Dissipative hydrodynamics of QGP
- Thermodynamic variables
- Relativistic dissipative hydrodynamics with charge densities
- Baryon stopping

3. Center domain structure in QGP
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Introduction

m Quark-gluon plasma (QGP): many-body system of deconfined
quarks and gluons
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Graphics by AM

The QGP is supposed to have filled the early universe;
It can be produced in heavy ion experiments at RHIC & LHC

> Heavy ion QGP is characterized with...

- Near-perfect fluidity (thermalized)
- Large color opacity
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Introduction

m “Standard model” of high-energy heavy ion collisions

= Hadronic transport

— Freeze-out

QGP fluid — Hydrodynamic evolution

f Local equilibation

Glasma? —

cGe 7 ] z } Color glass condensate
» t<0fm/c: color glass condensate (saturated gluons)

» t~0-1fm/c: glasma? (pre-equilibrated medium)

) 1>10fm/c:  hadronic gas (weakly-coupled medium)
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Motivation

m Analyze hydrodynamic QGP at finite baryon density with
+ + baryon diffusion

X . .
A Net baryon is conserved at forward rapidity

- Precision physics including particle
identification (p/p ratio, etc.)
- Finite-density transport properties

Plot: BRAHMS, PRL 93, 102301 (2004)

A AGS

mopm By Baryon stopping can quantify kinetic

m SPS

erme A N energy available for QGP production

(BRAHMS)

mean rapidity loss <6y>
= rapidity of projectile nuclei y,
— mean rapidity of net baryon <y>
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Motivation
m Exploring the QCD phase diagram www.gsi.de

Quarks and Gluons

» Finite baryon density is a difficult
issue in first-principle calculations

Critical point?

Hadrons
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Hydrodynamics can be a help
in the exploration

Color Super-
Neutronstars  conductor?

Nuclei

Net Baryon Density

STAR, arXiv:1007.2613

200 GeV

- G24GeV \ Quark-Gluon Plasma

(a1) 10 - 20% (b1) 20 - 30%
= Fit to 200 GeV d?a

%ﬁi“

02.76 TeV v 27 GeV
©200 GeV ¢ 19.6 GeV
u62.4 GeV A 11.5GeV
039 GeV = A7.7 GeV
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Temperature (MeV)

Hadronic Gas

0 250 500 750 1000
Baryon Chemical Potential u, (MeV)

|:> Large v2 are observed at lower energies
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Thermodynamic quantities

m Inlocal rest frame u* = (1,0,0,0)

TH = T + 6T

e 0 0 O Se W
0 P, 0 0 e
o 0o P, o |wy
0 0 0 P, W2

N+ NG (1 =1,2,..,N)

10+4N dissipative currents
Energy density deviation: 0€

Bulk pressure: 11
2+N equilibrium quantities Energy current: WH
Energy density: €0 Shear stress tensor: 77
Hydrostatic pressure: Fo J-th charge density dev.: 571,,]
J-th charge density: 70.J0 J-th charge current: V]H
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Thermodynamic quantities

m |n general frame

THY — (eo + de)utu? — (Py + AR 4+ WhuY + WVul + xh?

AHY = gt — ubu”

N% = (njo + dnj)ut + V¥

10+4N dissipative currents
Energy density deviation: 0€

Bulk pressure: 11
2+N equilibrium quantities Energy current: WH
Energy density: €0 Shear stress tensor: 77
Hydrostatic pressure: Fo J-th charge density dev.: 571,,]
J-th charge density: 70.J0 J-th charge current: V]H
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Thermodynamic quantities

m Meaning of “dissipation” in fluids

H h

Shear viscosity Bulk viscosity Energy dissipation | Charge dissipation
= response to = response to = response to = response to
deformation expansion thermal gradient chemical gradients

viscosity dissipation

» Cross terms among thermodynamic forces are present (discussed later)

» 2"d order corrections are required for hydrodynamic stability and causality

W. Israel, J. M. Stewart, Annals Phys 118, 341 (1979)
W.A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985)

Lunch Seminar, 10t October 2013, Brookhaven National Laboratory, NY Next slide:  Dissipative hydrodynamics 10/ 27



Akihiko Monnai (RBRC) Non-equilibrium collective dynamics in high-energy heavy ion collisions

Dissipative hydrodynamics
m Israel-Stewart theory with net charges?

The entropy production

zd 2 ) ng’b 1 )
Ons” = = Z/g y 7af@ Onf" = Z/g XAl

where ¢(f) = filnf— e M1+ ef ) In(l +ef?), ' = s

» Assume the deviation dy* = y* — v}, is expressed as

J _J ) J U
o0y’ =pl'q;i e, + pipYew (Cf. yo =g/ B +pl'2)

*Grad’s moment method extended to multi-conserved current systems

Epy = (BHH + 358(56 + Z B5nj5nJ)A“V + (BHH + 35656 —+ Z BgnJCSTLJ)uMuV

+ 2BWU(MW1/) + 2 Z BVJU(MVJ + BWWHV

J
= (DA + Di.de+ Y D, ong)u, + Dy W, + Y Di, VE
K K
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Dissipative hydrodynamics

m Israel-Stewart theory with net charges

The entropy produchon up to the 2"d order

8, 8" = '—(yo + 0Pl 0u(f§ + 0 f:)

3 3
7 T/q“%dp PO fi+ Y Z/q’gde 7 0ad !

rad/t'lona/ [-S theory

gzdg a gzdg o i
El/pz 3Ep7,pp16f0 -I_gl/pz 3Ep7,pp85f

equivalent tg linear response theory Semi-positive definite condition

1 1 1 .
O = deD s — TV yult + W (V“T + Dy, 2" order dissipative
fluid dynamic equations

+ TFMVTVQLU’I/) —
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Dissipative hydrodynamics
m Relativistic hydrodynamic equations D = u"d,
Conservation laws 9,7"" =0 9,Np =0 4 VHE =0" —u'D,

The law of increasing entropy -> Constitutive equations

KB a KB 1

+ ch'[VV,uDUM + X%VVMVM + XH’]TT(-;U/V(MUV)

1
II=—-CV,ut - CnaeDT

1
+ XIQIVVHVM T

+ x11v V. V# MTK

T T T T

1
+ XVJ V'uvuu + XVVVKVVU' + XV‘/VVV Uy + Xvﬂ.ﬂ'l“/v T + XVﬂ.’/Tl“/vVT

2+ xYnlIV* T+XVHHDU + Xy VI

1 1 1
TRYL): S <—Du“ . V“?) 7y AP DV, 4 X VEDEE L \b vED S

+ XV, Du, + XVWAWV Tup + XylIVH T

1
T = 277V<”u’/> — 7o D) oy IV B?) 4 X?WW’“/DM?B + Xzﬁw’“’l)f + XaamV pu”

+ L w4y Vi) /;f"’ s V(uvw =+ o VEDuY) x4, vinyv)
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Simulation Setup

m Equation of state: with Taylor expansion

P(T, uB) :P(T,O)erg)(T,O) /1B +o pe\’
T4 T+ 2 T T

Akihiko Monnai (RBRC)

P(T,0) :Equation of state at vanishing p, S. Borsanyi et al., JHEP 1011, 077
Xg)(T, 0) :2" order baryon fluctuation S. Borsanyi et al., JHEP 1201, 138

m Transport coefficients:
P. Kovtun et al., PRL94, 111601

Shear viscosity: n=s/dnm
A. Hosoya et al., AP 154, 229

Bulk viscosity: ¢ =5(5 —c?)n

. dup \—1
Baryon dissipation: kv = S—X(anﬁ):r

- . Au+Au 62 4 GeV
o Au+Au 200 GeV (PHENIX)

Initial conditions: Color glass theory

Energy density: MC-KLN

Net proton dN/dy

Net baryon density: Valence quark dist.

B Geometry: expansion

Next slide:  Results
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Results
m Net baryon rapidity distribution at RHIC and LHC

— initial
RH IC ideal hydro
T;=0.16 GeV --=- viscous hydro
— — dissipative hydro
o BRAHMS
PRL 93, 102301 (2004)

LHC — initial
ideal hydro
T,=0.16 GeV

S viscous hydro

— — dissipative hydro

|IIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII

* Hydrodynamic evolution sends the net baryon number to
forward rapidity

- Viscosities/dissipation could be non-negligible at RHIC
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Results
m Mean rapidity loss at RHIC

Mean rapldlty loss <5y> =y — < > - BRHAMS, PLB 677’, 267 (2009)

Yr dNB By Yr dNB 5W) 5 s
dy dy % R
O 0 :: "'

, int?
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Ideal hydro:
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Viscous hydro: : F W NA49 (PbPb)
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Dissipative hydro:

 Transparency of the collision is effectively enhanced
in hydrodynamic evolution

|:> More kinetic energy is available for QGP production
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Discussion

m New implications from LHC

TT T T T T[T T[T T T[T T T[T T T T T[T T T T[T T TTTT

| Central events A+A Talk by LHC — initial Initial loss:3.88

r ideal hydro
— (3y), from dE/din| Woehrmann T;=0.16 GeV

" s BRAHMS (62.4 GeV)
5F @cus 276 Tev)

viscous hydro

— — dissipative hydro

Ideal hydro: 3.44
Viscous: 3.48
Dissipative: 3.51

(5y>B from dN/dly|
[] E802/E866
Y E917
O NA49
© BRAHMS (62.4 GeV)
L ()IBHAHlMS(2?OGe\|I) E
s L i — initial e .
2345678910 © LHC ot o Initial loss:3.36
. T,=0.16 GeV
ybeam f

|llllllllllllllllllIlll‘lllllll

viscous hydro

— — dissipative hydro

More transparent initial
conditions are preferred  2* | AR Ideal hydro: 2.81

Note: a diﬁ‘erent observable : / Viscous: 2.86
e g N Dissipative: 2.92

: E
(0y)E = ENN - / v 3yr V'
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Cross-coupling effects (1)

m Linear response theory and cross terms

Bulk pressure (w/o charges)

1 1 Camr - Crose o
H:_CHHTV,LL“N_CH56DT + T Cg VMU'LL

Response to Response to '
expansion cooling bulk viscosity ¢

Response to expansion itself can be as large as shear viscosity
Cancelled by the cross term except for crossover where c .2~ 0

A reason for general smallness of bulk viscosity

Baryon dissipation current

1 1
VH = mVV“’u—B_,WW (vﬂ__|__ Du“)

T T T

Baryon dissipation can be induced by thermal gradient + acceleration
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Results

m Thermo-diffusion effect (a.k.a. Soret effect)

initial - Baryon dissipation can be induced by

dissipative (cv=1, C w3 . .
— . dissipative (c,=1, ¢, ,=0) thermal gradients (and acceleration)

dissipative (c =1, ¢ =-5) ILL 1 1

V“ = K v,u_B_H A V,U__'__Duu
1% 7 v < Tt

at the linear order

- The cross coefficient can be negative
TZB()T
KVW = CVW VT Ky
eo + Po

* The effect of cross coupling is likely to be small in
high-energy collisions

because of the matter-antimatter symmetry
V#(up) = —VH#(—up) which leads to kvw (1B
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Cross-coupling effects (2)

m Mixing of the currents at the 2" order

System dependence

Hydrodynamic theory considers: In high-energy nuclear collisions:
o > 11 > VH

.
7T’Lix )

1

Bulk-shear coupling term in bulk pressure
Baryon-shear and baryon-bulk coupling terms in baryon dissipation

have more impact than other 2" order terms (numerically confirmed)

Applicability of the expansion is dependent on the 2"9 order transport
coefficients
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Brief summary

m Dissipative hydrodynamic model is developed and simulated at
finite baryon density

» Net baryon distribution is widened in hydrodynamic evolution
I:> Transparency of the collision is effectively enhanced

I:> More kinetic energy may be available at QGP production
in early stage (~ 10% at RHIC)

P The results are sensitive to baryon diffusion coefficient

I:> Ambiguities remain in initial condition, but the
distribution has important information

m Future prospects include:

» Estimation of transverse expansion, inclusion of more
realistic transport coefficients, etc.
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Motivation

m Center domain structure in the QGP Asakawa, Bass and Miiller, PRL 110,201301 (2013)

» One knows how, but not why hydrodynamics work so well

» Z, (center) symmetry in pure gauge system

Asakawa, Bass and Miller, PRL 110,201301 (2013)

[> Three minima separated by energy
barriers may exist in the complex plane of
Polyakov-loop for the QGP phase

[> Center domain structure can develop in
a QCD medium because CGC and glasma
imply the typical size of correlation is
~1/Qs

E> Mean free path is characterized by the size of domain;
small viscosity and large opacity can be explained

» How does it approach pQCD picture at high T?
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Center domain structure

m Quark contribution K. Kashiwa, AM, arXiv:1309.6742 [hep-ph]

(a) -> (b) Stable domains expand (v=0) while metastable
ones (v=1,2) shrink due to pressure imbalance

E> Mean free path is longer, increasing viscosity

(b) -> (c) Percolation of stable domains

(c) -> (d) Metastable states vanish above a critical
temperature T ; = T(P, ,= 0); large viscosity and transparency

[> A smooth bridge from sQGP (hydrodynamics) to wQGP (pQCD)
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Center domain structure

m Quark contribution

K. Kashiwa, AM, arXiv:1309.6742 [hep-ph]

pp, PA and dA collisions PHENIX, aniv:1303.1794 [nucl-ex]

T T TT T |
= @ PHENIX dAu (r 200 GeV)
PHENIX Au+Au v,{EP}/c*" (V$=200 GeV)

\v =0 size of domains ~ 0.5 fm B~ o CMS PhePbv,(EP)E™ ((5-276 ToV)

CMS Pb+Pb v,{2}/¢,{2} (/s=2.76 TeV)

ATLAS p+Pb (/s=5 TeV)

< radius of a proton ~ 0.8 fm B ALIGE popb (508 Tow

[> Several domains (and primordial fluidity)
can be developed

The structure might be fragile against | d,}c‘:z,dn| 10°
finite size effects and quark contribution

Heavy collisions at higher energies

E> Scenarios can be distinguished when above T . (N;~ 3)

cri

Center domain is the origin of fluidity: yes -> small v, (v = 0 everywhere)
no ->largev, (in SQGP stage)
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Summary and outlook

m Dissipative hydrodynamic model at finite baryon density
P Baryon stopping is effectively reduced by hydrodynamic flow
IZ> Energy available for QGP production could be larger
» Net baryon distribution is sensitive to baryon diffusion

Future prospects: three dimensional analyses and more
realistic transport coefficients for quantitative discussion, etc.

m Center domain structure with quark contribution

» Provides a bridge from hydrodynamics to pQCD

» A topological critical temperature may be present near
N~ 3

» Future prospects: analyses on system size dependence,
boundary effects, etc.
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The end

m Thank you for listening!
m Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/
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